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Abstract—Complex software-intensive systems are often de-
scribed as systems of systems (SoS) comprising heterogeneous
architectural elements. As SoS behavior fully emerges during
operation only, runtime monitoring is needed to detect deviations
from requirements. Today, diverse approaches exist to define
and check runtime behavior and performance characteristics.
However, existing approaches often focus on specific types of
systems and address certain kinds of checks, thus impeding
their use in industrial SoS. Furthermore, as many SoS need to
run continuously for long periods, the dynamic definition and
deployment of constraints needs to be supported. In this paper
we describe experiences of developing and applying a DSL-based
approach for monitoring an SoS in the domain of industrial
automation software. We evaluate both the expressiveness of our
DSL as well as the scalability of the constraint checker. We also
describe lessons learned.

Keywords—Systems of systems, requirements monitoring, con-
straint checking, domain-specific languages.

I. INTRODUCTION

Many software-intensive systems today are systems of sys-
tems comprising heterogeneous and interrelated architectural
elements. Common properties of SoS are decentralized control;
support for multiple platforms; inherently volatile and con-
flicting requirements; continuous evolution and deployment; as
well as heterogeneous, inconsistent, and changing elements [1].
As the full behavior of SoS emerges during operation only,
system testing is not sufficient to determine compliance with
requirements. Instead, the behavior of the systems and their
interactions need to be continuously monitored and checked
during operation to detect and analyze deviations from the
expected behavior. Checks include the occurrence and order
of runtime events (temporal behavior) [2], the interaction of
systems (structural behavior), or properties of runtime data
(data checks).

Different research communities have been developing run-
time monitoring approaches for various kinds of systems
and diverse types of checks. Examples include requirements
monitoring [3], [4], monitoring of architectural properties [5],
complex event processing [6], or runtime verification [7], [8]
to name but a few. The expected runtime behavior often
also can be expressed formally using temporal logic [9]–[12].
Furthermore, domain-specific languages are used to facilitate
the definition of constraints [13]–[16], which then can be
checked based on events and data collected from systems at
runtime, e.g., via probes instrumenting systems [17].

Runtime monitoring in SoS, however, is particularly chal-
lenging as, e.g., temporal, structural, and data constraints need
to be checked for a high number of events. Furthermore,
many SoS are cyber-physical systems [18] that need to run
in 24/7 mode for weeks or even months without interruption,
which means that constraints need to be defined and deployed
dynamically to ensure live and instant feedback on require-
ments violations to users. Many existing runtime monitoring
approaches, however, emphasize particular technologies or
types of constraints, or are limited to offline analysis of event
traces [19]–[21].

This paper describes experiences of extending an existing
incremental consistency checker for design models [22], [23]
to support event-based runtime monitoring of SoS [24]. Our
work is motivated by an industrial case of monitoring a metal-
lurgical plant automation system, an example of a large-scale
industrial SoS (Section II). We describe an industrial scenario
and discuss challenges for constraint checking at runtime. To
address these challenges, we developed a domain-specific con-
straint language aiming at industrial end users, who often lack
deep programming skills, to ease the definition of various types
of constraints (Section III). Our DSL-based approach allows to
incrementally check constraints at runtime and was developed
by extending an existing incremental checker (Sections IV
and V). This ensures that violations of requirements can be
reported instantly to users monitoring an SoS. The approach
further supports the definition and deployment of constraints
at runtime, i.e., constraints can be added or modified without
stopping the checker or the monitored systems. We evaluate
the expressiveness of the DSL using real constraints from our
industrial case and show the scalability of our checker in an
industrial monitoring scenario (Section VI). We also discuss
lessons learned aimed at researchers and practitioners working
on similar challenges (Section VII). We conclude the paper
with a discussion of related research and an outlook on future
work (Sections VIII and IX).

II. INDUSTRIAL CASE AND CHALLENGES

Our industry partner Primetals Technologies – a joint
venture of Siemens and Mitsubishi Heavy Industries – is
one of the world’s leading engineering and plant-building
companies in the iron, steel, and aluminum industries. The
company provides machinery, hardware, software, and automa-
tion systems for steel producers around the globe. We use
the example of a plant automation system (PAS) developed



and maintained by Primetals Technologies to illustrate the
runtime monitoring and constraint checking challenges. The
PAS automates, optimizes, and tracks different stages of the
metallurgical production process. It comprises systems for
process automation of melting iron ore and raw materials
to produce iron, refining liquid iron and other materials to
produce steel, and casting liquid steel into solid steel slabs.
These independently developed automation systems for iron,
steel, and continuous casting (cf. Fig. 1) size up to several
million LoC. The systems have heterogeneous architectures,
they have been developed using diverse technologies, and they
frequently interact, e.g., when exchanging data controlling the
metallurgical production process.

Although the different PAS software systems are engi-
neered independently, there are manifold dependencies in the
metallurgical process that need to be considered when planning
their joint operation. For instance, liquid iron is needed for
producing liquid steel, which is then the input to casting
solid steel slabs. The PAS SoS is further connected to legacy
or third-party systems leading to additional complexity. Fur-
thermore, there are dependencies between components within
one particular system. For instance, a component optimizing
the arrangement of steel slabs on a strand in the caster –
to minimize scrap and to ensure steel quality – relies on
information provided by other components such as material
tracking.

Besides such constraints, which cross-cut different sys-
tems or components, there are also constraints affecting only
particular components. For example, the component handling
the selection of material from a silo and the subsequent
transportation on a conveyor belt, has to ensure that events
happen in specific sequence and within a certain time span to
guarantee the uninterrupted and continuous flow of material.

Although such PAS requirements and their dependencies
are carefully managed during development, it is crucial to
monitor them after deployment to detect inaccurate and er-
roneous behavior at runtime. This is particularly important
after upgrading components, a frequent case when modernizing
existing plants. Furthermore, the metallurgical production pro-
cess is supervised by operators in control rooms and manual
intervention by an operator can have unforeseen effects on
the automation software and the production process, again
suggesting a runtime monitoring approach. For instance, the
cut length defined by an operator of the caster system might
conflict with required plan characteristics from the production
planning system, or the ladle-finished event might not happen
in steelmaking, thus affecting the continuous casting process.

A. Industrial runtime monitoring scenario

In the following we describe a typical scenario for runtime
monitoring based on an earlier qualitative study with develop-
ers and engineers of our industry partner [25]. The scenario
shows that constraints need to be defined and deployed dynam-
ically and checked continuously at runtime. For the scenario
we assume that the PAS is running at the customer’s site and
an infrastructure for runtime monitoring is set up to collect
events and data about the running systems. The scenario shown
in Fig. 1 starts with a customer report describing a deviation
from the expected system behavior: after upgrading several

Fig. 1: Industrial scenario for runtime monitoring of SoS.

components the initialization of the casting system does not
complete within the expected time frame, thus delaying the
process of casting liquid steel to solid steel slabs. Due to the
interplay of several systems there are many potential reasons
for this behavior and both hardware and software issues might
have caused the problem.

(1) The service engineer reviews the incoming customer
report and remotely connects to the customer’s automation sys-
tem to investigate the issue by checking the running systems.
(2) The service engineer uses the monitoring infrastructure
to retrieve more details about the state of the system, e.g.,
by analyzing recorded event data to reveal the origin of the
reported problem. This task is simplified if constraints related
to the issue have already been defined and violations have
been recorded. (3) If necessary, the service engineer adds
new constraints to the monitoring infrastructure. Depending
on the type of problem different types of constraints may
be necessary, for instance, to check event sequences or data
ranges. In the case of the delayed initialization of the caster the
service engineer adds a new constraint checking the execution
of the initialization steps within a time frame of 60 seconds.
The constraint is immediately activated in the monitoring
infrastructure to detect deviations from the specified behavior
in the running system. (4) The service engineer is notified by
the monitoring infrastructure as soon as the initialization phase
is delayed again. Violations of the new constraint are detected
and can be instantly reviewed by the engineer.

B. Challenges

Several challenges for defining and checking constraints
can be derived from our industrial case:

Constraint diversity. Different types of constraints are
needed to monitor the industrial SoS. This covers global invari-
ants and range checks of variables across the SoS, temporal
constraints on the occurrence and expected order of events,
or architectural rules constraining the allowed interactions of
components. Constraints are further required to measure prop-
erties such as performance or resource consumption. Regarding
runtime monitoring, a wide variety of approaches exist that
focus on particular types of constraints (see Section VIII).
While these approaches focus on specific types of constraints,



there is a lack of unified approaches covering multiple types of
constraints, as needed in our SoS runtime monitoring context.

Incremental definition and runtime management of con-
straints. Constraints are typically not defined once before
the system is put into operation but rather incrementally
when needed. For instance, as our industrial scenario showed,
engineers may need to define additional constraints when
investigating an issue reported by a customer. Furthermore,
SoS evolve continuously and are configured to address specific
requirements. The constraints thus do not remain stable but
need to co-evolve with the system to adapt to certain monitor-
ing scenarios [26]. Many existing constraint checkers do not
support the dynamic definition and management of constraints
at runtime (see Section VIII). Specifically, although activating,
deactivating, and parameterizing constraints at runtime is sup-
ported by some approaches, adding new constraints at runtime
typically cannot be done without restarting the monitoring
infrastructure.

End-user definition of constraints. End-user support for
writing constraints becomes a primary issue, as a runtime mon-
itoring environment and its constraint checking mechanism
will be used in practice by both engineers and maintenance
personnel. While many existing constraint languages address
the needs of software developers (see Section VIII), writing
new or understanding existing constraints is much harder for
users without a deep programming background.

III. A CONSTRAINT DSL FOR SOS MONITORING

Existing constraint languages, e.g., requirements-level
methods [14], [27]–[29], UML-based approaches [30], [31], or
formal runtime verification techniques [9]–[12], often support
specific types of constraints. For example, some approaches
focus on monitoring performance properties, while others
emphasize temporal properties, or support aggregating and
checking data. Additionally, most existing approaches have
been developed for a particular application domain (e.g.,
service-based systems [30], [32] or business processes [33])
and are hard to apply in other areas. Furthermore, many
existing constraint languages are deemed as inconvenient by
industrial end users as they require deep understanding of
formal concepts or lack tool support.

We conducted a series of workshops and interviews with
engineers and project managers of our industry partner to
elicit requirements for a constraint language for SoS runtime
monitoring, based on concepts from existing constraint lan-
guages. Emphasizing usefulness and practical applicability, we
then developed a DSL allowing engineers to specify temporal,
structural, and data constraints on events and data.

We assume a stream of events observed at runtime by
a monitoring infrastructure. The events are collected in an
event model also managing arbitrary data attached to specific
events. For example, events in a material quality optimization
system show when the system starts, initializes, optimizes,
and stores the optimization results. Each event has a time
stamp and data can be attached, e.g., the inputs used for
initializing the optimization system, the computed optimization
results, or information on the performance of the optimization
component.

Listing 1: Grammar of our constraint DSL for specifying past
occurrence, future occurrence, and data constraints
C o n s t r a i n t :

t r i g g e r = i f event ’ t r i g g e r e v e n t ’ [ with Data ] occurs
( P a s t O c c u r r e n c e | F u t u r e O c c u r r e n c e | DataCheck ) .

P a s t O c c u r r e n c e :
c o n d i t i o n = ( event ’ event name ’ [ s o u r c e = ’ s o u r c e ’ ]

has occurred [ with Data { , Data } ] )
| ( e v e n t s ’ event name ’ { , ’ event name ’}
occurred [ c o n s e c u t i v e l y ] )
p r e v i o u s l y in the l a s t Time

F u t u r e O c c u r r e n c e :
c o n d i t i o n = ( event ’ event name ’ [ s o u r c e = ’ s o u r c e ’ ]

occurs [ with Data { , Data } ] )
| ( e v e n t s ’ event name ’ { , ’ event name ’}
occur [ c o n s e c u t i v e l y ] ) wi th in Time

DataCheck :
c o n d i t i o n = data Data { , Data}

Data :
Da ta I t em O p e r a t o r Da ta I t em | Value

Da ta I t em :
key ( ’ i temname ’ , ’ i t e m p a t h ’ , [ F u n c t i o n ] )

F u n c t i o n :
c o n t a i n s | s i z e

Time :
i n t m i l l i s e c o n d s | s e c o n d s | m i n u t e s | h o u r s

O p e r a t o r :
> | >= | < | <= | == | !=

Value :
double | i n t | boolean | S t r i n g

The grammar of our DSL is shown in Listing 1. Each con-
straint starts with a description of the trigger event activating
the evaluation of the constraint (cf. Fig. 2), e.g., “optimization
requested”. To also allow specifying invariants, the event type
of the trigger event can be defined as “any”. The trigger
specification is followed by a condition statement. Conditions
can be defined to check the past occurrence of a (sequence
of) event(s) before the trigger event; the future occurrence of
a (sequence of) event(s) after the trigger event; or data attached
to the trigger event. Arbitrary or specific orders of sequences
can be defined.

Conditions on the past or future occurrence of events are
temporal constraints for checking restrictions regarding the
occurrence or sequential order of events, i.e., they are pre- or
post-conditions on these events. For simple order restrictions,
an event of a certain type must occur before or after an event
of a specific type, e.g., one event of type B must occur after
any event of type A (required sequence [A, B]). For hard time

Fig. 2: Event stream and constraint types of our DSL.



Listing 2: Examples of three constraints from the PAS
/ / f u t u r e o c c u r r e n c e c o n s t r a i n t c h e c k i n g a s e q u e n c e o f e v e n t s

w i t h a hard t i m e l i m i t
t r i g g e r = i f event ’ C o n t r o l A d a p t e r . r e q u e s t O p t i m i z a t i o n ’

occurs
c o n d i t i o n = e v e n t s

’ O p t i m i z e r . optimize START ’ ,
’ O p t i m i z e r . f e t c h D a t a ’ ,
’ O p t i m i z e r . cacula teFINISHED ’ ,
’ O p t i m i z e r . r e t r i e v e O p t i m i z a t i o n R e s u l t ’ ,
’ C u t t i n g . f o r w a r d O p t i m i z a t i o n R e s u l t ’

occur c o n s e c u t i v e l y w i th in 10 s e c o n d s .

/ / p a s t o c c u r r e n c e c o n s t r a i n t w i t h a hard t i m e l i m i t
t r i g g e r = i f event ’ Tundish . c a r L o c k e d I n C a s t P o s i t i o n ’ occurs
c o n d i t i o n = event ’ Tundish . l a d l e A r r i v e d ’
has occurred in the l a s t 500 m i l l i s e c o n d s .

/ / da ta c o n s t r a i n t c h e c k i n g t h e da ta a t t a c h e d t o t h e e v e n t
Sys tem . d i s c I n f o

t r i g g e r = i f event ’ System . d i s c I n f o ’ occurs
c o n d i t i o n = data ( ’ d i s c D a t a ’ , ’ D r i v e s / F r e e D i s c P e r c e n t a g e ’ ) >20.

limits, the occurrence of an event of a certain type is required
within a certain time, e.g., an event of type B must occur within
a maximum time of five seconds after an event of type A has
occurred.

Data constraints check certain items contained in runtime
data objects attached to an event. For numeric values boundary
checks are frequently used, e.g., to ensure a data item is within
a certain range. For character sequences usually only checks
for equality are used. Data conditions in our DSL can also
contain functions, e.g., to count the number of elements in a
list, to check whether a list of data objects contains a certain
item, or to calculate the maximum, minimum, or average
of a set of values. It is also possible to combine past and
future occurrence checks with data checks, e.g., to determine
if a certain event occurred with the attached data fulfilling a
particular condition.

Listing 2 shows three examples from the PAS: a constraint
checking the future occurrence of an event sequence in a
particular order including a hard time limit for the optimization
system cycle; a constraint on the past occurrence of a particular
event with a hard time limit checking that the ladle has arrived
before starting casting; and a data constraint checking that free
disc space is larger than 20%.

Checks on past and future occurrence as well as data checks
have been sufficient so far to cover the constraints elicited
together with our industry partner (cf. Section VI.A). However,
it might be necessary to extend the language in the future to
cover additional types of constraints. We have thus developed a
DSL-based approach that makes it easy to extend the language.

IV. EXTENDING AN INCREMENTAL CONSISTENCY
CHECKER TO SUPPORT SOS RUNTIME MONITORING

As runtime monitoring presumes the continuous (re-)eva-
luation of constraints an incremental evaluation strategy is
advisable to ensure fast evaluation feedback to users in case
of violations. We therefore decided to use an incremental
consistency checker (ICC) [22], [23], [34] developed in our
previous work on consistency checking of design models in
an IDE. To address the challenges identified in Section II
we extended the original ICC to support runtime checking

of events and data. We also integrated this new Runtime
Incremental Consistency Checker (RICC) in our SoS Runtime
Monitoring Framework [24].

More specifically, the RICC (cf. Fig. 3) covers the existing
Runtime Monitoring Framework, the extensions necessary to
use the ICC for runtime monitoring, and the original ICC. On
top of the RICC we added the extensible DSL to support end
users defining constraints in a simple and intuitive manner.
The constraints are translated to the underlying language of
the ICC, which is Java in our current implementation. When
developing the RICC we reorganized the original ICC (which
was integrated in an IDE) into several components. We now
use a client-server architecture allowing multiple users to
contribute and modify constraints. Constraints can be added
to the checker at any time without restarting, as the DSL code
is compiled dynamically to Java. Furthermore, we provide tool
support for different monitoring tasks: an editor to write new
constraints, a tool for activating and deactivating constraints
on the monitoring server, and a tool for reviewing constraint
violations of different components and systems of the SoS at
runtime.

The RICC relies on events provided by the Runtime
Monitoring Framework, which uses an Event Model to abstract
from different systems and technologies. The event model
enables checking across system boundaries by linking events
provided by probes instrumenting different systems. It also
provides the foundation for tools visualizing behaviour, per-
sisting event logs, or checking constraints on events. Events
are distinguished by their type. Types can be arranged hi-
erarchically to reflect the location in the system structure.
For example, in the PAS Caster system the event type “Op-
timizer.optimize START” is a child of the “Optimizer” type,
which again is a child of the “Caster” type. Furthermore, events
are distinguished by their source, i.e., the probes instrumenting
systems or components in the SoS. Each event has a time stamp
and arbitrary data can be attached, e.g., primitive data types,
objects, as well as arrays and lists of data types or objects.
Event data can also carry performance information about the
instrumented system.

An Event Model Facade allows the ICC – typically running
on a separate server – to register to the event model as listener
and to connect with the runtime monitoring infrastructure (i.e.,
the event model). The facade is informed about new incoming
events of certain types from specific, possibly distributed,
sources.

The DSL Editor provides support for writing constraints
in our DSL, including meta-data such as a description, a
custom error message, or a severity class. We refer to a
constraint defined in the DSL Editor as a Constraint Definition.
As soon as the constraint definition is transmitted to the
checking server, it is compiled to Java on the fly by the
RICC to a Compiled Constraint Definition, thereby making it
usable by the ICC. The Constraint Manager allows activating,
deactivating, and modifying (groups of) constraints.

The Constraint Instance Store is a central component
responsible for maintaining and instantiating compiled con-
straints. An active constraint is not instantiated permanently
but only if an event occurs that matches the trigger event
defined for this constraint. Each created constraint instance is



Fig. 3: Our runtime incremental consistency checker (RICC) and its integration with our runtime monitoring framework. The
numbers indicate how the different components interact in a typical scenario.

completely self-contained and can be evaluated independently.
This ensures that even for a high number of incoming events
only selected constraints are instantiated and checked.

Depending on the type of constraint, a constraint instance
may need to be evaluated immediately after instantiation (e.g.,
when checking data attached to the triggering event or the past
occurrence of events), or it may need to be postponed until
future events arrive. This task is handled by the Evaluation
Delay Manager, which extends the original ICC and adds
capabilities for intercepting constraint evaluation requests. It
delays their evaluation and executes them only when required
events arrive or as soon as a specified timeout occurs.

If a constraint can be evaluated it is passed to the ICC’s
Constraint Engine. The constraint is evaluated by executing
its code, thereby accessing the event model via the Event
Model Facade to retrieve events or data if necessary. If the
constraint instance evaluates without errors (the constraint con-
dition evaluates to true), the instance is immediately destroyed
and removed from the checker. If the constraint instance is
violated and evaluates to false, further information on the
violation is forwarded to the Error Handler. This includes
the events leading to the violation, missing events, or violated
data ranges. Listeners can register to this component to receive
this information. For instance, the Runtime Error Manager
tool displays this information as soon as it becomes available
to allow users reviewing occurring violations immediately.
Violations can also be persisted for later inspection.

V. IMPLEMENTATION AND TOOLS

The RICC has been developed using different components
and technologies. The event model has been implemented in
Java as part of the runtime monitoring infrastructure [24]. The
model provides interfaces for retrieving events of a certain type

or from a specific source. It further allows registering change
listeners informing the RICC about new events. The DSL
editor and the constraint manager tool are both implemented
in Java using the Eclipse RCP framework.

We employed the Java-based frameworks XText and Xtend
(http://www.eclipse.org/Xtext) for developing the constraint
DSL, end-user guidance in the editor, and support for the
dynamic compilation of DSL code to Java code. The frame-
works allow adding new language constructs in a rather simple
manner as the DSL and the transformation steps are treated
separately and automation is provided, e.g., for supporting
syntax highlighting and auto completion in the editor as shown
in Fig. 4(a).

The implementation of the RICC is based on an ear-
lier implementation for checking the consistency of software
product lines [34]. We split the original ICC implementation
into a client and a server part and use the Java Compiler
API to dynamically compile and load constraints on demand.
The evaluation delay manager has been implemented as a
separate Java component intercepting evaluation requests from
the ICC and postponing them in case of future occurrence
constraints. The error manager provides interfaces retrieving
information on violated constraints and for registering listeners
to be notified as soon as constraint violations are detected.

At runtime, a graphical overview is provided of all com-
ponents of the SoS and their current state as shown in
Fig. 4(b). The runtime error manager shown in this view allows
reviewing constraint violations related to a specific component,
(missing) events responsible for constraint violations, and
additional information provided by the constraints.



(a) DSL Editor and Constraint Manager. (b) Runtime System Overview and Runtime Error Manager.

Fig. 4: Tools for defining and managing constraints (a) and for monitoring and reviewing constraint violations (b).

VI. EVALUATION

Our cooperation with Primetals Technologies allowed us
to evaluate our approach by applying the runtime monitoring
infrastructure and the constraint checking approach to sev-
eral systems in a realistic setting. We explore two research
questions regarding the general applicability of our approach.
Specifically, we investigate the expressiveness of our DSL and
the scalability of the RICC in a typical monitoring scenario
based on Primetals Technologies’ SoS.

RQ1 – Is the DSL sufficiently expressive to allow its use in
a real-world industrial SoS? We discussed monitoring needs
together with architects and engineers in several workshops
and conducted a series of interviews to assess the current prac-
tices at Primetals Technologies for developing, commissioning,
and operating their directed SoS. Furthermore, we studied
documents and analyzed different systems part of the PAS. For
the evaluation we selected requirements covering the different
systems of the PAS and formalized them as constraints.

RQ2 – Does the constraint checking approach scale to
industrial needs in the context of a real-world SoS? The
company gave us access to their PAS simulation environment,
which is used to test the automation software before and during
commissioning. We experimented with parts of the PAS in
a virtual environment simulating machinery and production
planning components. This allowed us to use our approach in
an SoS environment without interfering with real production
systems in a metallurgical plant. We describe the results
of simulations to address RQ2. Specifically, in a ten-hour
simulation run we measured the number of constraints instan-
tiated and checks performed, the memory consumption of the
constraint checking engine, and the average time necessary
to evaluate single constraint instances. We also dynamically
added and removed constraints during the ten-hour run to test
our capabilities for dynamic constraint definition and checking.

A. RQ1 – DSL Expressiveness

We performed five two-hour workshops and several follow-
up meetings with seven system experts to capture require-
ments, which have to be monitored at runtime, from different

parts of the PAS. For example, at SoS level, various non-
functional requirements concern monitoring the performance
of the systems’ hardware. Log and trace files, dumps, and
stack traces are continuously created, which can lead to low
disk space, requiring to monitor the remaining hard disc
capacity. Other requirements cover the interaction of different
parts of the system (e.g., user interface and database) or the
checking of (the duration of) certain sequences of events. For
example, one requirement regards the maximum duration of
a metallurgical calculation. We also monitor the optimization
component, which calculates the optimal distribution of steel
slabs on a casting strand and relies on input data from various
other components. Overall, we identified 40 requirements from
several different systems of the PAS to be monitored.

For each of these 40 requirements, we discussed with
engineers from Primetals Technologies how constraints could
be defined for checking the expected behavior at runtime.
For example, one requirement on the timely calculation of
optimizations led to a future occurrence constraint. This con-
straint checks that after an optimization run is triggered, either
by the operator in his user interface or by another system,
the optimization result has to be available within 5 seconds
and then fed to the subsequent system. Another requirement
on avoiding incorrect or missing quality calculations led to a
past occurrence constraint checking that when a robotic arm
holding a ladle full of liquid steel is starting to move, the data
about the material in the ladle must already have been updated.
Yet another requirement on avoiding incorrect optimization
results led to a data constraint checking that the “cross section
optimization” value is positive and in a certain range when
optimizations are being calculated.

During these workshops we defined at least one constraint
for each requirement leading to over 40 different constraints.
So far the types of constraints our DSL allows to express were
sufficient. However, future workshops might reveal new types
of constraints requiring the extension of our DSL. For now, we
can claim our DSL is expressive enough to define constraints
for monitoring the industrial SoS.



TABLE I: Overview of the 13 constraints used for the evalua-
tion, describing the number of checks performed (# checks)
and the median evaluation time (MET) for each constraint
during the ten-hour evaluation run.

Const. Type Name # checks MET
[ms]

CST-01 FUTURE PlanChangeUserCheck 128 1.38
CST-02 FUTURE CastSequenceValidityCheck 2 10.55
CST-03 DATA CheckCrossSectionRange 747 54.06
CST-04 DATA CheckOptiRunId 753 22.00
CST-05 PAST CheckCastingArmProcedure 1 9.74

CST-06 DATA CheckAvailableDiskSpace 16 0.66
CST-07 DATA CheckAvailableStorage 16 0.60
CST-08 DATA CheckCastWatchdogStates 9,700 0.37
CST-09 FUTURE CheckOptiCalcRun 687 1.20

CST-10 FUTURE CheckOptiRunConsistency 584 1.37
CST-11 DATA CheckStrandNumbersValid 548 14.64
CST-12 FUTURE CheckOptiRunCycle 584 9.71
CST-13 PAST CheckStrandSpeedLength 55,029 1.55

B. RQ2 – RICC Scalability

For evaluating the scalability and applicability of the check-
ing approach to a real-world SoS we used our monitoring
infrastructure and the PAS simulation environment to perform
a ten-hour evaluation run. Not all constraints we defined can be
monitored in the provided simulator, because it cannot run all
required systems. We thus selected 13 constraints (cf. Table I;
details are not shown due to non-disclosure agreements) to
evaluate the scalability of the RICC as described below. While
this might seem like a small number, the number of checks
(almost 70k) performed on instantiated constraints based on
almost 500k events still allows us to demonstrate scalability.

The goal of our evaluation was to investigate whether the
constraint checker can handle a realistic number of events
without significant increases in execution time and memory
usage. We also assessed the capabilities for dynamically adding
and removing constraints by incrementally adding constraints
and later again deactivating them.

We started with five active constraints (CST-01–CST-05)
and added added four constraints (CST-06–CST-09) after one
hour, followed by four more constraints (CST-10–CST-13)
after another hour. The evaluation then continued for six
hours with the full set of constraints active. After eight
respectively nine hours we again reduced the number of active
constraints by removing CST-01–CST-05 and CST-06–CST-
09. The simulation environment and the monitoring infras-
tructure were set up on a standard Desktop machine with an
Intel(R) Core(TM) i5 CPU @2.60GHz 16GB RAM running
Windows 7 64-Bit.

We measured the number of events that occurred, the num-
ber of constraints instantiated from the 13 constraint definitions
(i.e., the checks performed), the (median) evaluation time for
each constraint (in ms), the maximum number of constraint
instances alive at a certain point in time, and the memory
consumption of the constraint checker (in MB). During the
ten hours of the simulation run, 482,841 events and their
related data were captured and 68,795 constraints checks were
performed resulting in an average of 115 checks per minute.

For each constraint instance we measured the time required

for executing the method, which checks the constraint and
generates violations in case of errors. The goal was to assess
whether the number of active constraints negatively influences
the evaluation time.

The median evaluation time for a constraint instance ranges
from 0.37 ms for CST-08 up to 54 ms for CST-03. Fig. 5 pro-
vides an overview of the evaluation times during the simulation
grouped by the different constraint types. The comparably high
median evaluation times for data constraints CST-03, CST-04,
and CST-11 can be explained by the size and complexity of
the data items that need to be checked for these constraints.
Also there are a few outliers for constraints CST-05, CST-09,
and CST-13 (details cf. Fig. 5(a)). Nevertheless, the evaluation
time was always less than one second, which still allows to
provide instant feedback to users. Also, the values indicate that
for future occurrence constraints (Fig. 5(c)), past occurrence
constraints (Fig. 5(b)), and data constraints (Fig. 5(d)) the
number of active constraints does not at all influence the
evaluation time.

The maximum number of active constraint instances for
a measure point ranges from 0 (for most constraints) to 137
for constraint CST-13. As described, a constraint instance is
created only when needed and immediately destroyed after
its evaluation. This is also confirmed by the memory usage
of the Java Virtual machine running the constraint checker.
In case of CST-13, due to its type, i.e., past occurrence, and
the rather high number of instances that have to be evaluated,
constraint instances are queued before they are destroyed.
Still, despite this queuing the memory usage does not increase
noticeably, remaining between 330 MB (lower quartile) and
412 MB (upper quartile) during the simulation run.

C. Discussion of Results and Threats to Validity

Our evaluation confirms that we could express all con-
straints elicited for the PAS SoS so far (RQ1) and that the
underlying constraint checker was able to handle the high
number of incoming events and perform all constraint checks
fast enough to provide instant feedback (RQ2).

In terms of external validity, the results and findings are
based on a single directed SoS in the domain of industrial
automation. We thus cannot claim that the DSL is capable
of covering all possible types of constraints in other systems.
However, our knowledge of other systems suggests similar
constraint patterns. Due to the flexibility and extensibility of
both, the DSL and the underlying constraint checker it is possi-
ble to consider additional constraint types if needed and adapt
the constraint checker accordingly. Also, the requirements and
constraints selected for the evaluation might not cover the full
range of requirements existing in the industrial SoS. However,
given the scale and complexity of the PAS we consider our
evaluation a good starting point representing a realistic case.
We plan to conduct further evaluations with different systems
in the future.

The evaluation focuses on the expressiveness of the
DSL (RQ1) and on the scalability of the constraint
checker (RQ2). We deliberately did not discuss end-user tools
in detail as this is part of a separate study assessing the
usefulness of the different tools and editors for writing and
managing constraints. However, the constraints and the DSL



(a) Boxplots of evaluation times (in ms) for all constraints. (b) Distribution of evaluation times for future occurrence constraints (CST-01,
CST-02, CST-09, CST-10, CST-12)

(c) Distribution of evaluation times for past occurrence constraints (CST-05,
CST-13)

(d) Distribution of evaluation times for data constraints (CST-03, CST-04,
CST-06, CST-07, CST-08, CST-11)

Fig. 5: Overview of median evaluation times for all constraints (a) and distributions of evaluation times separately for future
occurrence (b), past occurrence (c), and data constraints (d) over the ten-hour simulation run. We activated constraints after one
and after two hours and deactivated them again after eight and nine hours as shown by the vertical lines.

were developed together with engineers of our industry partner
leading to rapid feedback, which resulted in several adaptations
and improvements during the development process.

Regarding the rather small number of constraints used
in our scalability evaluation (13), the number of constraint
instances created at runtime and the number of constraint
checks performed have a much higher impact on the scalability
of the checker. We demonstrated in our evaluation that even for
constraints leading to many instances and checks (cf. CST-13)
our approach ensures immediate feedback.

Our evaluation did not measure the overhead caused by
the probes instrumenting the system. We also did not consider
the performance of the monitoring infrastructure, which is
not directly part of the constraint checking mechanism and
running on a separate server. However, earlier evaluations [24]
confirm that the underlying infrastructure is capable of hand-
ling a high amount of events. Events used for checking
constraints in our evaluation are provided by probes using
AspectJ (http://eclipse.org/aspectj/). A separate evaluation we
conducted shows that the overhead for our probes ranges from
1% to 13% for typical instrumentations but can go up to 70%
when serializing complex data structures that are later checked
in a constraint. However, the probes used in our evaluation
are small, atomic code fragments only collecting specific data
in the SoS, and serializing complex objects was rather the
exception. Furthermore, all additional processing and analysis
tasks are performed independently on a separate machine to
keep the impact on the monitored systems low.

VII. LESSONS LEARNED

We summarize experiences and lessons learned of de-
veloping our DSL-based checker, which may be useful for
researchers and practitioners working on similar challenges.

Systems of systems require an iterative language design.
The heterogeneous systems in an SoS and the diverse teams in-
volved in their development and maintenance make it difficult
to develop a language addressing the different needs. When
developing our constraint DSL we started with interviewing
different teams responsible for different systems to identify
common requirements for the language. We showed each
version of the DSL to these teams and refined it according
to their comments. This iterative language design helped to
come up with a solution that is acceptable for its users.

Keep the YAGNI (“you aren’t gonna need it”) principle in
mind when developing a DSL. When starting our collaboration
with Primetals Technologies we analyzed diverse existing
constraint languages and formal notations used for defining the
expected behavior of a running system. Although we found
several of these approaches quite appealing the reaction of
our industry partner was different. This was mainly because
the languages provided too many features not needed for their
context and defining constraints was regarded as difficult using
formal notations. They wanted to define the constraints as close
as possible to natural language and liked the structured prose
technique we proposed to them. A key lesson thus is to keep
a language as simple as possible and to cover only what is
necessary for the concrete context. The constraint language



should be oriented towards end users and hide the complexities
of the underlying constraint checker.

Simplify and automate extending the DSL. While keeping
the constraint language simple definitely makes sense for
practical use, new types of constraints and checks might still be
needed. For example, while we started with support for simple
range checks for data constraints with primitive data objects,
later the need arose for more complex checks of data objects
and their relations. It is thus essential to allow extending the
language at any time. We thus employed technologies such
as XText and XTend, which make it easy to compile to a
target language like Java from a DSL and to generate end-
user support for a DSL based on a grammar.

Keep the mapping of the constraint DSL to the constraint
checker flexible. During our project we also learned that it
might be required to exchange the underlying checker, e.g.,
when the number of events to be monitored becomes too high
impacting the checker’s performance too much. So far our
Java-based incremental checker worked fine as demonstrated in
the evaluation. However, future needs might require switching
to a checker providing higher performance for certain types
of constraints. It is thus advisable to define a clear interface
between the language and the checker to allow replacing both.
For instance, while keeping our simple DSL, one could re-
place our checker with another checker that supports checking
temporal and data constraints. Only the compilation of our
constraints to the target language of the checker would then
have to be changed.

Support dynamic constraint management in runtime mon-
itoring. Industrial scenarios demonstrate the need to add new
or modify existing constraints even while the system and
the monitoring infrastructure are running, e.g., to investigate
an unforeseen issue. Providing a dynamic approach is thus
needed. A positive side-effect is also the performance of the
constraint checker, which dynamically instantiates constraints
and immediately destroys constraints after their evaluation
results have been stored.

VIII. RELATED WORK

Different research communities have been developing ap-
proaches for monitoring systems to detect violations of re-
quirements at runtime. Examples include requirements mon-
itoring [3], [4], performance monitoring, complex event pro-
cessing [6], or runtime verification [7], [8].

Requirements monitoring approaches aim at determining
the compliance of a system with its requirements during
runtime [3], [35]. Monitors are used to detect requirements
violations and serve as a starting point for revealing the root
cause of problems. For example, Robinson [4] has proposed
the ReqMon framework including a language for defining
requirements and tools supporting different user roles during
monitoring. ReqMon supports formalizing high-level goals,
requirements, and their monitors. It automates generating and
deploying monitors and provides traceability between high-
level descriptions and lower-level runtime events.

Performance and event monitoring approaches focus on
monitoring specific aspects of a running system, e.g., related
with performance. Bubak et al. [36], for instance, propose

the J-OCM approach supporting programmers in developing
monitoring tools for distributed Java applications at the virtual
machine level by providing uniform and extensible monitoring
facilities for communication between different components.
Their work is based on the Online Monitoring Interface
Specification (OMIS) [37] providing a standardized interface
between monitoring tools and the systems to be monitored.
Van Hoorn et al. [21] describe Kieker, an extensible frame-
work for event and application performance monitoring. The
framework provides capabilities for system instrumentation,
event recording, event processing, and basic visualization.

Requirements monitoring and event monitoring approaches
provide a solid basis for monitoring specific aspects of single
systems – e.g., performance, data-flow, or system communi-
cation – but are limited regarding the diversity of constraints
and support for constraint checking in SoS architectures.

Complex event processing (CEP) [33] is an approach for
monitoring arbitrary business processes. It aims at combining
event streams gathered from multiple sources to infer events
or patterns of events. Event patterns are typically described by
implementing rules in some higher programming language or
in an Event Description Language. While we are not focusing
on monitoring business processes, CEP makes use of some
common concepts that are related with our work, i.e., event
description languages can be seen as DSLs useful to describe
constraints to be monitored.

Furthermore, in the domain of runtime verification various
approaches have been proposed to support monitoring and
verifying system properties. For instance, Calinescu et al. [7]
propose a three-staged process of monitoring, analysis, and
planning. A system model is verified to detect violations of
requirements. Ghezzi et al. [8] present the SPY@RUNTIME
approach that relies on behavior models which are represented
by finite state automata. An initial model is inferred in a setup
phase and then used at runtime to detect changes.

In these and other domains, a wide variety of different con-
straint languages exist for defining requirements, system prop-
erties, or desired event sequences. For example, Spanoudakis
et al. [38] present SERENITY, a framework for monitoring
security and dependability properties. Monitoring rules are
expressed as EC-Assertions, a temporal formal language based
on the Event Calculus. EC-Assertions are used to detect viola-
tions within streams of runtime events, which are are provided
by different distributed sources. The language is XML-based
and provides language support for event occurrences such
as Happens, HoldsAt, or Terminates. Viswanathan et al. [9]
developed two constraint languages for their MaC (Moni-
toring and Checking) architecture: PEDL (Primitive Event
Definition Language) for writing low-level specifications and
MEDL (Meta Event Definition Language) for defining safety
requirements. This separation allows to adapt to different
implementation languages and specification formalisms (e.g.,
Java-MaC [39] for Java programs). Baresi et al. [15] present
mlCCL, the Multi-layer Collection and Constraint Language
part of the ECoWare framework for monitoring service-based
systems. Besides constraints for analyzing events, the language
also provides capabilities for defining how to collect messages
or key performance indicators and how to aggregate data
from multiple objects. Montali et al. [40] present Declare, a
declarative business process constraint language part of the



Mobucon EC monitoring framework. The language is based
on the Event Calculus and allows defining sets of rules that
must be satisfied in order to correctly execute a given process.
They distinguish between four different types of constraints:
existence, choice, relation and negation. Bertolino et al. [41]
present a property-driven approach for runtime monitoring. A
property meta-model allows the definition of quantitative and
qualitative properties. The approach further distinguishes be-
tween abstract properties for generic declarations, descriptive
properties describing guaranteed properties, and perspective
properties describing system requirements. The approach uses
the GLIMPSE framework for monitoring distributed systems
and checking the properties at runtime. Aktug et al. [42]
present an approach for monitoring security properties. They
use a security specification language called ConSpec to de-
scribe automata for security requirements.

Existing constraint languages, however, do not support
all three challenges in SoS monitoring, i.e., coping with the
diversity of constraints in large-scale systems, supporting the
incremental definition and runtime management of constraints,
and providing end-user support for constraint definition.

Existing work also often uses temporal logic to support
monitoring software systems. Several authors have shown the
expressiveness and usefulness of such formalisms [10]–[12].
However, these approaches usually operate on event traces
and do not support the incremental definition and runtime
management of constraints. Also, they are often difficult to
use by industrial end users, at least in our experience.

Developing domain-specific languages to support (indus-
trial) end users in complex tasks has been discussed in detail
in related work, e.g., by Hermans et al. [43] in the area of
Web services and by Voelter and Visser [44] in the area of
product line engineering. Hermans et al. have identified several
success factors for the use of DSLs in an industrial context:
reliability, usability, productivity, learnability, expressiveness,
and reusability. Our experiences confirm these success factors.
Our evaluation focused on the expressiveness of the constraint
DSL and the scalability of the checker. We have also discussed
the reusability of our DSL, i.e., that it is flexible and can
be adapted an automated manner. Assessing productivity and
reliability requires longitudinal studies, which we plan to
conduct as part of our future work. Also, we plan to assess
usability and learnability in studies with our industry partner.
In this regard, we will consider the experimental evaluations
performed for PROPEL [45], an approach guiding users through
the process of defining formal property specifications. Similar
to [45], we also plan to assess the usefulness of our DSL for
defining requirements to be used for runtime monitoring.

IX. CONCLUSIONS AND FUTURE WORK

Based on a scenario of monitoring an industrial system of
systems we derived challenges regarding the definition and
checking of constraints at runtime. Existing languages and
checkers cannot easily be applied in an SoS context due to
the diversity of constraints required, the need to incrementally
define and manage constraints, and the required end-user
support. We have described a constraint DSL for industrial end
users and an incremental checker we have been developing to
address these challenges.

Our approach supports the incremental checking of con-
straints at runtime and provides live and instant feedback to
users. Our checker also supports the incremental definition
and dynamic deployment of constraints at runtime, without
stopping the checker and the monitored system. We evaluated
the expressiveness of our constraint DSL using real constraints
from our industrial case and the scalability of our checker
in an industrial monitoring scenario. Our experiences suggest
designing a constraint DSL in an iterative manner and keeping
it as simple as possible. We also learned to keep the mapping
of the DSL to the checking engine flexible to allow switching
underlying checking technologies.

In our future work we aim to perform a usability assess-
ment of our tools – particularly the constraint DSL editor
– involving industrial end users. We further want to apply
our approach to systems in other domains and in longitudinal
studies. Furthermore, we are currently working on a framework
to support the systematic comparison of existing constraint lan-
guages and formalisms regarding their usefulness for particular
monitoring scenarios.
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[20] K. Havelund and G. Roşu, “Efficient monitoring of safety properties,”
Int’l Journal on Software Tools for Technology Transfer, vol. 6, no. 2,
pp. 158–173, 2004.

[21] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework for
application performance monitoring and dynamic software analysis,” in
Proceedings 3rd Joint Int’l Conference on Performance Engineering,
2012, pp. 247–248.

[22] A. Egyed, “Instant consistency checking for the UML,” in Proceedings
of the 28th Int’l Conference on Software Engineering. ACM, 2006,
pp. 381–390.
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